博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Strange Towers of Hanoi(DP,汉诺塔)
阅读量:7117 次
发布时间:2019-06-28

本文共 4326 字,大约阅读时间需要 14 分钟。

Strange Towers of Hanoi
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 2195   Accepted: 1446

Description

Background
Charlie Darkbrown sits in another one of those boring Computer Science lessons: At the moment the teacher just explains the standard Tower of Hanoi problem, which bores Charlie to death!
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem:
  • There are three towers: A, B and C.
  • There are n disks. The number n is constant while working the puzzle.
  • All disks are different in size.
  • The disks are initially stacked on tower A increasing in size from the top to the bottom.
  • The goal of the puzzle is to transfer all of the disks from tower A to tower C.
  • One disk at a time can be moved from the top of a tower either to an empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be solved using a simple recursion.I deny to code something as simple as this!"
The teacher sighs: "Well, Charlie, let's think about something for you to do: For you there is a fourth tower D. Calculate the smallest number of disk moves to move all the disks from tower A to tower D using all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the things Charlie is good at. Actually, the only thing Charlie is really good at is "sitting next to someone who can do the job". And now guess what — exactly! It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to tower B using the algorithm for four towers (one move). Then you would move the remaining two disks from tower A to tower D using the algorithm for three towers (three moves). And the last step would be to move the disk from tower B to tower D using again the algorithm for four towers (another move). Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this really is the best solution for n = 3 you need to check the other possible values 1 and 3 for k. (But, by the way, 5 is optimal. . . )

Input

There is no input.

Output

For each n (1 <= n <= 12) print a single line containing the minimum number of moves to solve the problem for four towers and n disks.

Sample Input

No input.

Sample Output

REFER TO OUTPUT.

Source

, Darmstadt, Germany
 
首先给出状态转移方程:dp[n]=min((dp[n-k] << 1) + (1 << k) - 1). 1<=k<=n
可能有的童鞋不熟悉“<<”运算,这里1<<k就是2^k,dp[n-k] << 1相当于dp[n-k] *2。
这里dp[n]表示盘子个数为n时问题的最优解,(1 << k) - 1就是三根柱子时要移动k个盘子的最小次数,关于此公式的推导见 。
要得出此状态转移方程只需根据题目中的以下描述:
At first k >= 1 disks on tower A are fixed and the remaining n-k disks are moved from tower A to tower B using the algorithm for four towers.Then the remaining k disks from tower A are moved to tower D using the algorithm for three towers. At last the n - k disks from tower B are moved to tower D again using the algorithm for four towers (and thereby not moving any of the k disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k with the minimal number of moves.
也就是说,其实题目已经提供了算法。。。只需了解常规的汉诺塔问题并编程实现即可。
AC Code:
1 #include 
2 #include
3 4 using namespace std; 5 6 int main() 7 { 8 int dp[13] = {
0, 1, 3, 5}; 9 for(int n = 4; n < 13; n++)10 {11 dp[n] = 0xfffff;12 for(int k = 1; k <= n; k++)13 {14 int t = (dp[n-k] << 1) + (1 << k) - 1;15 if(dp[n] > t) dp[n] = t;16 } 17 }18 for(int i = 1; i < 13; i++) printf("%d\n", dp[i]);19 return 0;20 }

 

转载地址:http://yeyel.baihongyu.com/

你可能感兴趣的文章
汉得宣布开源:基于容器的企业级应用 PaaS 平台
查看>>
Python爬虫之微打赏爬虫
查看>>
轻松地在 Confluence 4.2 规划文档结构
查看>>
边缘计算的“完美风暴”
查看>>
贵州设立工业及省属国有企业绿色发展基金 总规模300亿
查看>>
springboot 2.X jdbc 实现session共享mysql
查看>>
第十四章:SpringCloud 依赖Git仓库实现配置对称加密
查看>>
1024 程序员节:给 DBA 们的福音
查看>>
寻找复杂背景下物体的轮廓(OpenCV / C++ - Filling holes)
查看>>
52ABP模板 ASP.Net Core 与 Angular的开源实例项目
查看>>
VC 6.0下载 VC 6.0英文版下载 Visual C++ 6.0 英文企业版 集成SP6完美版(最新更新地址,百度网盘)...
查看>>
递归-汉诺塔
查看>>
SAMtools: SAM格式的处理利器
查看>>
AI工程师成长之路--机器学习之模型评估与选择
查看>>
菜鸟排查数据库异常的事
查看>>
CSS:关于元素宽度与高度的讨论 系列文章(一)
查看>>
webstorm、phpstorm、idea等使用技巧记录
查看>>
腾讯内核团队发布 TCPA,为何是 OPEN 而非开源?
查看>>
Linux 用户被差别对待?无法通过 apple.com 管理 Apple ID
查看>>
芯片巨人英特尔的 Linux 开源驱动加入支持其独显的代码
查看>>